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Chapter 1

Melatonin and the Metabolism of Reactive 
Oxygen Species (ROS) in Higher Plants

Jorge Taboada, Russel J. Reiter, José M. Palma, and Francisco J. Corpas 

Abstract Melatonin, designated in plants as phytomelatonin, is a key biomolecule 
in both animal and plant cells. This is because, in addition to the detoxifying capac-
ity melatonin has against different reactive oxygen species (ROS), it also has signal-
ing properties that boost certain metabolic pathways and trigger both enzymatic and 
non-enzymatic antioxidant systems. This review aims to give a wide perspective of 
melatonin biosynthesis in plant cells and the relevance of this molecule to palliate 
certain environmental stresses, many of which have been accompanied by oxidative 
stress. Likewise, it evaluates the data which documents the beneficial effects of 
melatonin when it is applied exogenously.

Keywords Antioxidant · Abiotic stress · Phytohormone · Nitric oxide · Melatonin · 
Oxidative stress

1.1  Introduction

Since its identification in plants in 1995 (Dubbels et al. 1995; Hattori et al. 1995), 
the indoleamine melatonin (N-acetyl-5-methoxytriptamine) has attracted the atten-
tion of many research groups working in highly diverse aspects of animal and plant 
systems. This interesting and promising biomolecule derived from tryptophan 
(Palego et  al. 2016), whose chemical structure is the result of serotonin 
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(5- hydroxytryptamine) acetylation (Lerner et al. 1959a), is known in plants as phy-
tomelatonin (Blask et al. 2004; Zhao et al. 2021).

The discovery and isolation of melatonin in animals initially took place in 1958, 
more specifically in the pineal gland of cows (Lerner et al. 1958). A year later, it was 
discovered in humans (Lerner et al. 1959b). In animal systems, numerous physio-
logical roles of melatonin have been documented, including the modulation of cir-
cadian rhythms (Vadnie and McClung 2017; Zisapel 2018; Stein et al. 2020), sleep 
regulation (Zisapel 2018; Stein et al. 2020), control of autophagy (Pan et al. 2018; 
Xiao et al. 2019), buffering the immune system (Carrillo-Vico et al. 2013) and pre-
vention of oxidative stress (Reiter et al. 2016; Shen et al. 2018; Reiter et al. 2013; 
Hardeland 2013) and avoiding inflammatory response (Mannino et  al. 2019). In 
addition, melatonin is currently used for the treatment of jet lag (Herxheimer 2005) 
and its therapeutic effectiveness is being evaluated both in Alzheimer’s and 
Parkinson’s disease and in many types of cancer and in recent times in diabetes and 
SARS-COV-2 (Di Bella et al. 2013; Xie et al. 2017; Alghamdi 2018; Blume et al. 
2019; Pandi-Perumal et  al. 2020; Okeke et  al. 2022; Yiang et  al. 2023; Wang 
et al. 2023a).

Melatonin is essential for cellular redox homeostasis in animal and plant systems 
since it works as a scavenger of different free radicals and therefore it is considered 
a potent endogenous cellular antioxidant effects (Reiter et  al. 2016; Arnao et  al. 
2022). Due to its amphiphilicity and the presence of transporters, melatonin easily 
passes through the cell membrane and distributes in the cytoplasm from where it 
enters the nucleus and mitochondria to exert its antioxidant capacity (Reiter et al. 
1997). Melatonin defends against oxidative stress and free radicals due to its direct 
capacity of scavenging reactive oxygen species (ROS) and reactive nitrogen species 
(RNS), but also it functions as a signaling molecule to enhance the activities of 
antioxidant enzymes and related enzymes, such as catalase (CAT), superoxide dis-
mutases (SOD) isozymes, ascorbate peroxidases (APX), glutathione S-transferases 
(GST) and pathogenesis-related proteins (PR), as well as antioxidant molecules 
including glutathione and ascorbate (Khan et al. 2020; Sun et al. 2020a, b; Siddiqui 
et al. 2020; Ahmad et al. 2020), and maintaining mitochondrial homeostasis (Zhang 
and Zhang 2014; Wang et al. 2018). Furthermore, the discovery of the first melato-
nin receptor in Arabidopsis thaliana in 2018, designated candidate G-protein- 
coupled receptor 2/phytomelatonin receptor (CAND2/PMTR1) (Wei et al. 2018), 
prompted many workers to identify melatonin as a plant hormone (Hardeland 2014; 
Ludwig-Müller and Lüthen 2015). PMTR1 has the capacity to specifically bind 
melatonin and interact with the G protein α subunit 1 (GPA1). GPA1 mediates the 
production of H2O2 and the influx of calcium ions (Ca2+), resulting in stomatal clo-
sure (Wei et al. 2018). Recently it has been questioned whether the CAND2 recep-
tor is located in the plasma membrane or in the cytosol. Also, using mutants deficient 
in the CAND 2 receptor, the stimulation of mitogen-activated protein kinase 
(MAPK) mediated by melatonin was not suppressed (Back and Lee 2020). Thus, it 
is an open question whether the CAND 2 receptor is valid and, if it is, the signaling 
processes remain unknown. Recently, new data provide evidence that PMTR1 
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mediates in the stomata closure induced by melatonin through the control of ROS 
and nitric oxide generation (Wang et al. 2022a, 2023b).

Phytomelatonin can also act as an essential regulator in the mechanism of 
response to both abiotic and biotic adverse factors (Arnao and Hernández-Ruiz 
2019). Regarding the defensive function of melatonin against abiotic stresses, rele-
vant studies show that it protects against cold (Li et al. 2019), heat (Jahan et al. 
2019), high salinity (Zhan et  al. 2019; Zhang et  al. 2022a, b; Zhu et  al. 2022), 
drought (Zhang et al. 2013; Li et al. 2019; Jensen et al. 2023), heavy metals (Xu 
et al. 2020; Ou et al. 2023; Yang et al. 2023) global warming (Back et al. 2021), and 
bright light (Lee and Back 2018). Moreover, studies on the beneficial role of mela-
tonin against biotic stresses have been published (Zeng et  al. 2022; Sharif et  al. 
2018; Moustafa-Farag et al. 2019; Zhao et al. 2021; Tiwari et al. 2021; Reiter et al. 
2015; Yin et al. 2013; Lee et al. 2015; Hernández-Ruiz et al. 2023; Li et al. 2023); 
however, the mechanism of action is not yet clearly elucidated.

Phytomelatonin, as in animals a product of tryptophan metabolism, acts coordi-
nately with other phytohormones and plays a pivotal role in regulating plant growth 
and development (Liu et al. 2022), being involved in different physiological pro-
cesses such as promoting germination, seedling growth, root development, product 
yield, stomatal movements, circadian rhythm regulation, deferring leaf senescence, 
flowering and regulating fruit ripening (Corpas et al. 2021; Lee et al. 2022; Wang 
et al. 2018; Erdal 2019; Arnao and Hernández-Ruiz 2020; Hong et al. 2018; Arnao 
and Hernández-Ruiz 2021; Abbas et al. 2021).

This chapter provides an overview of the interaction of ROS with melatonin in 
various physiological processes, e.g., photosynthesis, stomatal aperture, etc., pro-
tection against abiotic and biotic adverse conditions, as well as the role of the variou 
Zhang s phytomelatonin-derived hydroxy metabolites present in plants and their 
possible future application to the industry for developments in horticulture, agricul-
ture and to obtain greater agro-economic benefits.

1.2  Biosynthesis of Melatonin

The animal pathway of the biosynthesis of melatonin has been widely studied and 
described (Axelrod and Weissbach 1960; Champney et  al. 1984), but with some 
unexpected variations (Tan et al. 2016; Mannino et al. 2021; Tan and Hardeland 
2021). In higher plants as revealed using biochemical, molecular biology, and 
genetic approaches it has been shown that the melatonin biosynthetic pathway is 
more complex than that in animals since it contains diverse routes and reversible 
processes that have not been well described in many plant species (Tan and Reiter 
2020). Melatonin biosynthesis starts with tryptophan (Trp), an aromatic amino acid 
produced through the chloroplastic shikimate pathway (Schmid and Amrhein 1995); 
it is generally agreed upon that the synthesis of melatonin involves four main steps 
catalyzed by at least six enzymes (Sun et  al. 2021). Figure  1.1 shows a simple 

1 Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants
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scheme of the biosynthesis route of melatonin and some of the compounds derived 
from its oxidation. Tryptophan decarboxylase (TDC) catalyzes the first stage which 
involves the conversion of tryptophan to tryptamine (Noé et al. 1984; Mérillon et al. 
1986; Byeon et al. 2014a; Pang et al. 2018; Lee and Back 2019b; Taboada et al. 
2023). In the next stage, tryptamine is converted to 5-hydroxytryptamine (sero-
tonin) by tryptamine 5-hydroxylase (T5H), a cytochrome P450 enzyme found in the 
endoplasmic reticulum (Fujiwara et  al. 2010; Park et  al. 2013). The third stage 
involves the serotonin N-acetyltransferase (SNAT) that converts serotonin to 
N-acetylserotonin (NAS) in chloroplasts and mitochondria. Now, three SNAT genes 
that have a low sequence homology have been recognized in higher plants, SNAT1, 
SNAT2, and SNAT3 (Kang et al. 2013; Byeon et al. 2016; Wang et al. 2017). The last 
stage is the conversion of NAS to melatonin by the enzyme N-acetylserotonin meth-
yltransferase (ASMT) (Kang et al. 2011). In several plant species that lack ASMT 
homologs, the NAS is converted to melatonin by the action of caffeic acid 
O-methyltransferase (COMT) (Byeon et  al. 2014b, 2015a; Lee et  al. 2014). 
Furthermore, it has been reported a reverse pathway which involved the named 
enzyme N-acetylserotonin deacetylase (ASDAC), which catalyzes the conversion 
of NAS to serotonin; it is present in the chloroplast as is SNAT (Lee et al. 2018) and 
its overexpression leads to a lower endogenous melatonin content than that in the 
wild type (Back et al. 2020). In general, melatonin content in healthy plant tissues/
organs range from picograms to nanograms per gram of fresh weight (Back 2021) 
but it could rise by several hundred-fold when plants are under diverse types of 
stresses (Lee et al. 2017).

Table 1.1 displays representative examples of the variability in melatonin content 
in diverse plant species and organs including fruits (climacteric and non- climacteric), 
leaves, stems, and different types of edible roots and seeds. This content can range 
from 10 to 5,300 pmol melatonin g−1 fresh weight (FW). Although the values of 
melatonin are expressed in fresh weight, it should be noted that the data expressed 
by dry weight are more reliable since the water content of plant tissue varies widely 
and depends on many factors such as plant variety, organs (roots, stems, leaves or 
fruits), climatic conditions, the amount of water available in soils, ripening stage of 
the fruits, etc. (Riga et al. 2014).

1.3  Reactive Oxygen Species (ROS) and Reactive Nitrogen 

Species (RNS)

Aerobic life is inevitably associated with the generation of both ROS and RNS (del 
Río 2015; Kohli et al. 2019). Table 1.2 includes some of the main ROS and RNS. In 
addition, some of these molecules such as H2O2, NO, nitrosoglutathione (GSNO), 
or nitro-fatty acids (NO2-FAs) have recognized signaling functions in plants in a 
wide variety of processes involving primary metabolism, growth, and development, 
response to biotic and abiotic stress, solute transport, autophagy, and programmed 

1 Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants
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Table 1.1 Melatonin concentration in different plant species and in the different organs, 
determined by radioimmunoassay. (Data extracted from Hattori et al. 1995). FW, fresh weight

Plant species
Melatonin content
(pg g−1 FW)

Climacteric fruits

  Kiwi (Actinidia chinensis) 24.4

  Tomato (Solanum lycopersicum) 32.2

  Apple (Malus domestica) 47.6

Non- climacteric fruits

  Strawberry (Fragaria magna) 12.4

  Cucumber (Cucumis sativus) 24.6

  Pineapple (Ananas comosus)
  Red chili pepper (Capsicum annuum)

36.2
1190–4480a

Leaves

  Indian spinach (Basella alba) 38.7

  Cabbage (Brassica oleracea) 107.4

  Chungiku (Chrysanthemum coronarium) 416.8

  Japanese ashitaba (Angelica keiskei) 623.9

  Tall fescue (Festuca arundinacea) 5288.1

Stem

  Asparagus (Asparagus officinalis) 9.5

  Welsh onion (Allium fistulosum) 85.7

Root

  Onion (Allium cepa) bulb 31.5

  Carrot (Daucus carota) bulb 55.3

  Ginger (Zingiber officinale) rhizome 583.7

  Japanese radish (Brassica campestris) 657.2

Seed

  Barley (Hordeum vulgare) 378.1

  Sweet corn (Zea mays L.) 1366.1

  Rice (Oryza sativa) 1006.0

  Oat (Avena sativa) 1796.1
aData obtained from Riga et al. 2014

cell death (Corpas et al. 2013; Mata-Pérez et al. 2016, 2017; Turkan 2018; Foyer 
and Hanke 2022). Moreover, ROS and RNS are also involved in post-translational 
modification (PTMs) of proteins including S-sulfenylation, nitration, S-nitrosation, 
nitroalkylation or methylation of histones (Niu et  al. 2015; Mengel et  al. 2017; 
Aranda-Caño et al. 2019; Corpas et al. 2020a, 2022a).

ROS are primarily produced by two chemical routes. The primary way is the 
electron transfer (between one to three electrons) to oxygen, involving in the pro-
duction of superoxide anion (O2

•−), hydrogen peroxide (H2O2), or hydroxyl radical 
(•OH). The second of these processes is the transfer of energy to molecular oxygen 
(O2), leading to the formation of singlet oxygen (1O2) (Halliwell and Gutteridge 

J. Taboada et al.
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Table 1.2 Main reactive oxygen and nitrogen species (ROS and RNS, respectively) containing 
inorganic and organic molecules

Nonradicals Radicals

Inorganic molecules

  Hydrogen peroxide (H2O2)
  Singlet oxygen (1O2)
  Nitroxyl anion (NO−)
Nitrosonium cation (NO+)
  Nitrous acid (HNO2)
  Dinitrogen trioxide (N2O3)
  Dinitrogen tetroxide (N2O4)
  Peroxynitrite (ONOO−)
  Peroxynitrous acid (ONOOH)

Superoxide anion (O2
•−)

Hydroxyl radical (•OH)
Hydroperoxyl radical (•OOH)
Nitric oxide (•NO)
Nitrogen dioxide (•NO2)

Organic molecules

  Nitrotyrosine (Tyr-NO2) Lipid peroxyl radicals (LOO•)

  Nitrosoglutathione (GSNO)

  Nitrosothiols (SNOs)

  Nitro-γ-tocopherol

   Nitro-fatty acid (NO2-FA)

1999; Sánchez-Corrionero et  al. 2017; Arnao and Hernández-Ruiz 2019; Lemke 
et al. 2021). Plant cells generate also reactive nitrogen species (RNS), but unlike 
ROS, for RNS the production mechanism is not fully resolved. Among the RNS, 
nitric oxide (•NO), nitrogen dioxide (•NO2), and non-radical species peroxynitrite 
(ONOO−) and S-nitrosoglutathione (GSNO) are included (Halliwell and Gutteridge 
1999; Kohli et al., 2019; Arnao and Hernández-Ruiz 2019).

In higher plant cells, the central ROS sources are the electron transport chain 
present in chloroplasts and mitochondria (Kohli et al. 2019), but there are different 
enzymes present in the subcellular compartments which can generate ROS such as 
some metabolic pathways present in peroxisomes such as β-oxidation, photorespi-
ration, purine metabolism, polyamine catabolism or sulfite detoxification pathway 
(Corpas et  al. 2020a, b), the plasma membrane NADPH oxidase (NOX) is also 
known as a respiratory burst oxidase homolog (Rboh) (Torres and Dangl 2005; Liu 
et al. 2020) as well as the family of antioxidant superoxide dismutases (SODs) (del 
Río et al. 2018). Additionally, other subcellular places of ROS generation are cyto-
sol, plasma membrane, and cell wall (Corpas et al. 2015; Podgórska et al. 2017; 
Kámán-Tóth et al. 2019). Although the primary enzymatic source of NO in plant 
cells is still an open question, there are two main candidates an L-arginine-dependent 
NO synthase-like activity and nitrate reductase (Mohn et  al. 2019; Corpas et  al. 
2022a, b). In general, pathogen infections raise the endogenous content of H2O2 and 
NO, and these reactive species act upstream of melatonin and promote its synthesis 
(Shi et  al. 2015; Lee and Back 2017), although the mechanism of how this is 
achieved remains unknown.

1 Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants
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1.4  Interactions Between Phytomelatonin and ROS

As previously mentioned, phytomelatonin is a powerful antioxidant, which, due to 
its lipophilic nature, is capable of crossing biological membranes to act in the dif-
ferent cellular compartments (Reiter et al. 2001b; Sofic et al. 2005; Tan et al. 2007; 
Galano et al. 2013; Zhang and Zhang 2014). Melatonin can directly scavenge •OH, 
H2O2, 1O2, NO, ONOO−, and other free radicals (Reiter et al. 2001a; Reiter and Tan 
2002; Galano and Reiter 2018). Thus, one molecule of melatonin has the capacity 
to scavenge two •OH molecules and four H2O2 molecules (Pieri et al. 1995; Reiter 
et al. 2000; Allegra et al. 2003).

In animal systems, it is well-documented that melatonin is converted to 
6- hydroxymelatonin (6-OHM) by P450 enzymes and further conjugated by sulfation 
into 6-sulfatoxymelatonin (Ma et  al. 2005; Hardeland 2017). Also, while some 
hydroxymetabolites such as N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) 
are generated from melatonin by the achievement of several enzymes such as 
indoleamine 2,3-dioxygenase (IDO) (Hirata et al. 1974; Tan et al. 2001) and cyto-
chrome c (Semak et al. 2005), other derivative metabolites of melatonin such as 
N-acetyl-5-methoxykinuramine (AMK), AFMK, 2-hydroxymelatonin (2-OHM), 
cyclic 3-hydroxymelatonin (3-OHM) and 4-hydroxymelatonin (4-OHM) are gener-
ated non-enzymatically by interaction with different oxidants, including ROS and 
RNS (Hardeland 2017) with all of them exhibiting high antioxidant activity (Reiter 
et al. 2016) (Fig. 1.1).

Melatonin seems not to be an end product in plant cells, however, and the 
phytomelatonin- derived hydroxymetabolites are not simple oxidation products of 
reactions between melatonin and ROS as observed in animals (Mannino et al. 2021). 
In plant cells, these compounds constitute the main forms of phytomelatonin in 
terms of endogenous levels (Lee et al. 2016) highlighting the 3-OHM and 2-OHM 
catalyzed by the enzymatic reactions of melatonin 3-hydroxylase (M3H) (Lee et al. 
2016) and melatonin 2-hydroxylase (M2H) (Byeon and Back 2015), respectively. 
Both M2H and M3H belong to the 2-oxoglutarate-dependent dioxygenase (2-ODD) 
family proteins (Bugg 2003; Kawai et al. 2014) that are only present in land plants 
(Lee and Back 2019a) (Fig. 1.1).

In healthy leaves of rice, concentrations of 600 ng · g−1 fresh weight (FW) of 
serotonin, 0.3  ng ·  g−1 FW of melatonin, 100  ng · g−1 FW of 3-OHM and 
40 ng · g−1 FW of 2-OHM have been obtained. However, higher levels of these 
hydroxymetabolites derived from phytomelatonin and serotonin are measured 
are in higher concentrations than phytomelatonin itself under cadmium stress 
and senescence (Lee et al. 2017; Choi and Back 2019a, 2019b). According to 
the example in rice, and taking into account that the catalytic efficiency of the 
M3H enzyme is 35 times higher than the M2H enzyme, 3-OHM is the most 
abundant hydroxymetabolite in plants, followed by 2-OHM and then AFMK and 
AMK (Byeon and Back 2015; Lee et al. 2016). Nevertheless, in plant species 
such as coffee (Coffea arabica), ginkgo (Ginkgo biloba), spinach (Spinacia 

J. Taboada et al.
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oleracea) and feverfew (Tanacetum parthenium), 2-OHM concentrations 368 
times higher than phytomelatonin have been found, once again indicating its 
role as a precursor of these hydroxymetabolites (Byeon et al. 2015b).

1.4.1  The Function of 2-hydroymelatonin (2-OHM)

As mentioned, 2-hydroxy melatonin is the product of the M2H enzyme and because 
it has a higher catalytic efficiency than SNAT and COMT enzymes (Back 2021), 
concentrations of 2-OHM are up to 100 times higher than phytomelatonin (Byeon 
et al. 2015b). Several plant studies show that 2-OHM participes in the induction of 
defense genes (Byeon et al. 2015c), tolerance against abiotic stress (Lee and Back 
2019a), and cadmium (Shah et al. 2020). In addition, other studies document that 
2-OHM can act as a senescence-inducing factor in Arabidopsis thaliana since it has 
pro-oxidative properties, capable of inducing the ROS production in a respiratory 
burst NADPH oxidase (RBOH)-dependent manner in senescent leaves (Lee and 
Back 2021a) and seeds (Lee and Back 2022a). In a recent study, the effects of 
2-OHM and phytomelatonin on seed germination concerning ROS production were 
compared in Arabidopsis thaliana (Lee and Back 2022a). Thus, it was observed that 
the seed pretreatment with 20 μM melatonin increased, by around 13%, the germi-
nation in both dormant and non-dormant seeds, while the treatment with 20 μM 
2-OHM increased the germination rate by 80% and 40% in non-dormant and dor-
mant seeds, respectively. Furthermore, this concentration of 2-OHM enhanced the 
expression of acid gibberellic (GA) biosynthetic genes such as 3-oxidase 2 (GA3ox2) 
and ent-kaurene synthase (KS) compared with the control. Furthermore, when a GA 
synthesis inhibitor (paclobutrazol) was applied, the germination was fully abol-
ished, indicating that both GA and 2-OHM are clearly associated with the seed 
germination. Likewise, genetic approaches using knock-out mutant or overexpres-
sion of M2H in embryo tissues during seed germination demonstrate that 2-OHM 
mediates ROS production in the germination of seeds (Lee and Back 2022a).

Similarly, 2-OHM acts rather as a signaling molecule capable of inducing ROS 
production both in leaf senescence and seed germination. Therefore, the balance 
between melatonin and 2-OHM is capable of regulating various physiological pro-
cesses such as seed germination, senescence, and embryogenesis. It should be noted 
that 2-OHM is in equilibrium with its tautomeric form, 2-acetamidoethyl-5- 
methoxyindolin-2-one (AMIO) (Hardeland 2017, 2019), which in turn has a low 
antioxidant capacity (Pérez-González et al. 2017), making it difficult to eliminate, 
and although its exact distribution in plant cells is not known. AMIO is located in 
lipid droplets or compartments with many membranes such as chloroplasts or mito-
chondria. It is involved in the activation of MAP kinases against pathogens (Lee and 
Back 2016a) and protects against abiotic stresses such as low temperatures and 
drought (Lee and Back 2016b). Therefore, it is in turn an active biomolecule that 
complements the physiological effects of phytomelatonin.

1 Melatonin and the Metabolism of Reactive Oxygen Species (ROS) in Higher Plants
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1.4.2  Cyclic 3-hydroymelatonin (3-OHM)

3-OHM is a hydroxy metabolite derived from phytomelatonin resulting from the 
action of M3H activity; it exhibits an antioxidant effect dealing with •OH and hydro-
peroxyl radical (•OOH) (Tan et  al. 2014; Galano et  al. 2014). This cytoplasmic 
enzyme shares only a 2-ODD domain with M2H, but it shows a low M2H activity 
in rice. Owing to the catalytic efficiency of M3H being even higher than M2H, and 
the endogenous levels of 3-OHM are higher than 2-OHM; thus, phytomelatonin is 
rapidly transformed into 3-OHM (Lee et al. 2016).

In addition, the 3-OHM levels are maximum at night and when overexpressed 
M3H mutants, the secondary tiller number is increased in rice (Choi and Back 
2019a), whereas in Arabidopsis thaliana, M3H knockout (m3h) exhibited less 
growth and antioxidant activity resulting in a delayed flowering phenotype, due to 
the suppression of Flowering Locus T gene (FT), indicating that this hydroxyme-
tabolite promotes plant growth and reproduction Furthermore, m3h plants had lower 
total biomass per plant and are smaller than the wild-type, owing to a lower expres-
sion of GA genes, such as KS, GA3ox1, and GA3ox2. Also, since no differences 
were found in the length of the root in response to saline stress (100 mM NaCl for 
3 weeks) or the pathogen (Pseudomonas syringae pv. Tomato DC3000) compared 
to wild-type, it was concluded that 3-OHM is not involved in the response to infec-
tions by pathogens or saline stress (Lee and Back 2022b)

1.5  Phytomelatonin and Antioxidant System Under 

Physiological and Stress Conditions

The exogenous application of melatonin has commonly been used at the experimen-
tal level due to its priming effects, protecting the plants against different types of 
environmental stresses, both of biotic and abiotic origin (Debnath et al. 2018, 2019; 
Dai et al. 2020; Mohamadi Esboei et al. 2022; Xie et al. 2022a, b. One of the most 
widespread aspects is that many types of stress lead to a marked increase in the 
generation of ROS, which usually triggers oxidative damage at the level of mem-
branes as well as certain cellular components (nucleic acid, proteins, and lipids), 
affecting their functionality (Siddiqui et al. 2020; Ren et al. 2022). Table 1.3 con-
tains some examples in which it is shown how melatonin applied in different ways 
and diverse plant species causes an increase in the main antioxidant systems, which 
makes it possible to control the exacerbated production of ROS and, therefore, alle-
viate its associated damage. Among the most studied are the enzymatic antioxidants 
including the peroxisomal catalase (CAT), the different superoxide dismutase 
(SOD) isozymes, components of the ascorbate-glutathione pathway including 
ascorbate peroxidase (APX), monodehydroascorbate peroxidase (MDAR), dehy-
droascorbate reductase (DHAR) and glutathione reductase (GR) as well as non- 
enzymatic antioxidant including ascorbate and glutathione (GSH) and the peroxidase 
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(POD) family (Mohamadi Esboei et al. 2022). Likewise, melatonin applies exoge-
nously also triggers the biosynthesis of secondary metabolites which possess anti-
oxidant capacities such as phenolic or terpene derivatives, for example, flavonoids, 
isoflavones, or carotenoids (Sun et al. 2020a, b; Jafari and Shahsavar 2021; Yin et al. 
2022a, b; Corpas et al. 2023).

The cascade of signals which mediate how melatonin triggers these antioxidant 
systems including its own biosynthesis is still poorly understood (Khan et al. 2022a). 
At present, there is a battery of interactions among melatonin and other cellular com-
ponents which seem to participate including calcium (Siddiqui et al. 2020; Tian et al. 
2022), mitogen-activated protein kinase (MAPK) cascades (Lee and Back 2021b; Ma 
et al. 2022; Maity et al. 2022; Xie et al. 2022b), nitric oxide (Zhao et al. 2018; Feng 
et al. 2021; Imran et al. 2022; Yin et al. 2022a, b), hydrogen sulfide (Kaya et al. 2022; 
Wang et al. 2022a), phytohormones such as abscisic acid (Guo et al. 2022), indole-
3-acetic acid (Zhang et al. 2022a, b), gibberellins (Arabia et al. 2022) or jasmonic acid 
(Ding et al. 2022; Wang et al. 2022a, b) as well as transcription factors. For example, 
melatonin treatment of pigeon pea triggers an increase in the expression of flavonoid 
3’ hydroxylase (F3´H) family which encodes for enzymes involved in the biosynthe-
sis of luteolin; this may to be a result of the transcription factor Phytoclock1 (PCL1) 
directly being bonded to the F3´H-5 promoter to enhance its expression that finally 
promotes an increase resistant to different stresses (Song et al. 2022).

1.6  Concluding Remarks

At present, melatonin is recognized as a master molecule in animal and plant systems 
because in addition to its highly diverse antioxidant properties (Manchester et  al. 
2015; Reiter et al. 2016), it has signaling capacities to stimulate a variety of metabolic 
pathways (Back 2021). Among them, the main enzymatic and non- enzymatic antioxi-
dant systems are highly implicated since they respond to melatonin allowing it to exert 
its beneficial effects to palliate the oxidative stress associated with different types of 
environmental stress. Therefore, melatonin initiates the cascade of signals and exerts 
its beneficial effects to counteract potential oxidative damage. Melatonin exhibits 
coordinated activities with a battery of other signaling molecules including calcium, 
MAP kinase, phytohormones, nitric oxide, or hydrogen sulfide. Figure 1.2 shows a 
working model where the main effects triggered by melatonin are summarized par-
ticularly where they relate to antioxidant systems; these systems have high relevance 
to the regulation of diverse physiological processes as well as to the mechanism of 
response to environmental stresses where oxidative metabolism usually is a signifi-
cant feature. One aspect of melatonin that has attracted the attention of many plant 
researchers is its biotechnological potential, since the exogenous application of mela-
tonin makes it possible to alleviate oxidative damage in the face of numerous types of 
stresses, but also due to its application in the horticultural industry since it is involved 
in maintaining the quality of horticultural products throughout their postharvest stor-
age (Aghdam et al. 2023; Corpas et al. 2022a, b).
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Fig. 1.2 Model of actions 
of melatonin 
(phytomelatonin) in higher 
plants under physiological 
and stress conditions where 
the antioxidant systems 
play a key function. The 
mechanism of melatonin 
modulation of the different 
antioxidant systems seems 
to be mediated by different 
signaling molecules 
including calcium (Ca2+), 
nitric oxide (NO), 
hydrogen sulfide (H2S), 
mitogen-activated protein 
(MAP) kinase, and 
phytohormones such as 
abscisic acid (ABA), 
indole-3-acetic acid (IAA), 
gibberellins (GAs) or 
jasmonic acid (JA)
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